sábado, 29 de mayo de 2010

Other MOSFET types

Dual gate MOSFET
The dual gate MOSFET has a tetrode configuration, where both gates control the current in the device. It is commonly used for small signal devices in radio frequency applications where the second gate is normally used for gain control or mixing and frequency conversion.

The Finfet, see figure to right, is a double gate device, one of a number of geometries being introduced to mitigate the effects of short channels and reduce drain-induced barrier lowering.

A double-gate FinFET device

Depletion-mode MOSFETs
There are depletion-mode MOSFET devices, which are less commonly used than the standard enhancement-mode devices already described. These are MOSFET devices that are doped so that a channel exists even with zero voltage from gate to source. In order to control the channel, a negative voltage is applied to the gate (for an n-channel device), depleting the channel, which reduces the current flow through the device. In essence, the depletion-mode device is equivalent to a normally closed (on) switch, while the enhancement-mode device is equivalent to a normally open (off) switch.[1]

Due to their low noise figure in the RF region, and better gain, these devices are often preferred to bipolars in RF front-ends such as in TV sets. Depletion-mode MOSFET families include BF 960 by Siemens and BF 980 by Philips (dated 1980s), whose derivatives are still used in AGC and RF mixer front-ends

NMOS logic
n-channel MOSFETs are smaller than p-channel MOSFETs and producing only one type of MOSFET on a silicon substrate is cheaper and technically simpler. These were the driving principles in the design of NMOS logic which uses n-channel MOSFETs exclusively. However, unlike CMOS logic, NMOS logic consumes power even when no switching is taking place. With advances in technology, CMOS logic displaced NMOS logic in the 1980s to become the preferred process for digital chips.

Main article: Power MOSFET
Power MOSFETs have a different structure than the one presented above.[35] As with all power devices, the structure is vertical and not planar. Using a vertical structure, it is possible for the transistor to sustain both high blocking voltage and high current. The voltage rating of the transistor is a function of the doping and thickness of the N-epitaxial layer (see cross section), while the current rating is a function of the channel width (the wider the channel, the higher the current). In a planar structure, the current and breakdown voltage ratings are both a function of the channel dimensions (respectively width and length of the channel), resulting in inefficient use of the "silicon estate". With the vertical structure, the component area is roughly proportional to the current it can sustain, and the component thickness (actually the N-epitaxial layer thickness) is proportional to the breakdown voltage.

It is worth noting that power MOSFETs with lateral structure are mainly used in high-end audio amplifiers. Their advantage is a better behaviour in the saturated region (corresponding to the linear region of a bipolar transistor) than the vertical MOSFETs. Vertical MOSFETs are designed for switching applications.

Cross section of a Power MOSFET, with square cells. A typical transistor is constituted of several thousand cells

DMOS stands for double-diffused metal–oxide–semiconductor. Most of the power MOSFETs are made using this technology

Semiconductor sub-micron and nano-meter electronic circuits are the primary concern for operating within the normal tolerance in harsh radiation environments like space. One of the design approaches for making a radiation-hardened-by-design (RHBD) device is Enclosed-Layout-Transistor (ELT). Normally, the gate of the MOSFET surrounds the drain, which is placed in the center of the ELT. The source of the MOSFET surrounds the gate. Another RHBD MOSFET is called H-Gate. Both of these transistors have very low leakage current with respect to radiation. However, they are large in size and take more space on silicon than a standard MOSFET.

Newer technologies are emerging for smaller devices for cost saving, low power and increased operating speed. The standard MOSFET is also becoming extremely sensitive to radiation for the newer technologies. A lot more research works should be completed before space electronics can safely use RHBD MOSFET circuits of nanotechnology.

When radiation strikes near the silicon oxide region (STI) of the MOSFET, the channel inversion occurs at the corners of the standard MOSFET due to accumulation of radiation induced trapped charges. If the charges are large enough, the accumulated charges affect STI surface edges along the channel near the channel interface (gate) of the standard MOSFET. Thus the device channel inversion occurs along the channel edges and the device creates off-state leakage path, causing device to turn on. So the reliability of circuits degrades severely. The ELT offers many advantages. These advantages include improvement of reliability by reducing unwanted surface inversion at the gate edges that occurs in the standard MOSFET. Since the gate edges are enclosed in ELT, there is no gate oxide edge (STI at gate interface), and thus the transistor off-state leakage is reduced very much.

Low-power microelectronic circuits including computers, communication devices and monitoring systems in space shuttle and satellites are very different than what we use on earth. They are radiation (high-speed atomic particles like proton and neutron, solar flare magnetic energy dissipation in earth's space, energetic cosmic rays like X-ray, Gamma-ray etc.) tolerant circuits. These special electronics are designed by applying very different techniques using RHBD MOSFETs to ensure the safe space journey and also space-walk of astronauts.

C.I. 18.257.871

2 comentarios: